Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Yin He, Ai-Qing Ma and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.035 wR factor = 0.087 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Diaqua(4,4'-bipyridine)bis(4-cyanobenzoato)cobalt(II)

In the title polymeric complex, $[Co(C_8H_4NO_2)_2(C_{10}H_8N_2)-(H_2O)_2]_n$, the Co^{II} atom, located on an inversion center, is surrounded by two N-donor molecules, two water molecules, and two 4-cyanobenzoate ligands, which impose an octahedral environment on the metal. 4-Cyanobenzoate, acting as a bridging linker, coordinates to the metal center in a monodentate fashion, in a skew mode. Both bridging spacers, *viz.* the 4,4'-bipyridine and 4-cyanobenzoate ligands, link adjacent metal atoms into a two-dimensional network.

Received 10 April 2003 Accepted 12 May 2003 Online 16 May 2003

Comment

In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and threedimensional coordination polymers with potential applications as functional materials (Kitagawa & Kondo, 1998; Moulton & Zaworotko, 2001). The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Tao *et al.*, 2002). 4–Cyanobenzoic acid (Hcba) has been used to develop new blue fluorescent materials; two crystal structures involving this ligand were recently reported (He & Zhu, 2003; Yuan *et al.*, 2001) and there are no reports of the cyano groups coordinating to a metal center or forming hydrogen bonds. Here we present the crystal structure of the Co^{II} one-dimensional network of the title compound, (I), which provides an interesting example of the cyano group of Hcba as a hydrogen-bond acceptor.

The building block of the structure of (I) consists of one Co^{II} atom, one 4,4'-bipyridine, two water molecules, and two cba ligands (Fig. 1). The Co^{II} atom, located on an inversion center, displays an octahedral geometry. Two 4-cyanobenzoate groups and two pyridine rings of the 4,4'-bipyridine ligands are located on opposite sides to minimize repulsion between the

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEP diagram of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2 View of the one-dimensional network formed by the $[Co^{II}(4,4'-bipyridine)]$ building block.

ligands. The dihedral angle between the two rings of 4,4'-bipyridine is $30.44 (13)^\circ$, indicating a large torsion. The cobalt metal centers are linked by two bidentate 4,4'-bipyridine linear spacers, which leads to a one-dimensional chain along the *a* axis (Fig. 2). The Co-O1 bond length [2.0792 (12) Å] is shorter than that of Co-O3 [2.1548 (15) Å], indicating some distortion of the coordination geometry. The Co-N bond lengths are similar to those of other Co^{II} complexes with a 4,4'bipyridine bridging linker (Hu et al., 2002). The 4-cyanobenzoate ligand is coordinated, in a monodentate fashion, in a skew mode $[Co-O1-C1-C2 = 156.36 (11)^{\circ}]$ to the cobalt center. The $O-H \cdots N$ hydrogen bonds between cyano groups and water molecules result in dimeric building units, viz. $[Co_2(cba)_2(H_2O)_2]$. Thus, the one-dimensional hydrogenbonding network is extended by cba as a hydrogen-bonding bridging linker (Fig. 3). As expected, both cba and 4,4'-bipyridine acting as linkages create a two-dimensional framework, with a Co···Co distance for the cba linkage of

Figure 3

View of the one-dimensional hydrogen-bond network formed by the $[Co_2(cba)_2(H_2O)_2]$ building unit.

View of the two-dimensional network constructed by bridging linkers of 4,4'-bipyridine and 4-cyanobenzoate ligands.

11.983 (2) Å and a Co···Co separation for the 4,4'-bipyridine linkage of 11.379 (2) Å (Fig. 4).

Experimental

Crystals were grown by the layer method, using two solutions in a narrow tube with a diameter of 0.8 cm. The upper solution was 10 ml methanol containing $0.05 \text{ mol } l^{-1}$ 4-cyanbenzoic acid and $0.025 \text{ mol } l^{-1}$ 4,4'-bipyridine. The lower solution was 5 ml $0.05 \text{ mol } l^{-1}$ Co(CH₃COO)₂·4H₂O in water. After standing for two weeks, purple needle crystals of (I) were obtained and filtered off.

Crystal data

$[Co(C_8H_4NO_2)_2(C_{10}H_8N_2)(H_2O)_2]$	$D_x = 1.497 \text{ Mg m}^{-3}$
$M_r = 543.39$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2702
a = 10.8329 (9) Å	reflections
b = 11.3792 (9) Å	$\theta = 5.2-55.6^{\circ}$
c = 19.7327 (16) Å	$\mu = 0.76 \text{ mm}^{-1}$
$\beta = 97.662 \ (2)^{\circ}$	T = 293 (2) K
V = 2410.7 (3) Å ³	Block, purple
Z = 4	$0.32 \times 0.30 \times 0.27 \text{ mm}$

Data collection

Bruker CCD area-detector	2830 independent reflections 2266 reflections with $L > 2\sigma(L)$
φ and ω scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.2^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.605, T_{\max} = 0.815$	$k = -14 \rightarrow 14$
7278 measured reflections	$l = -25 \rightarrow 18$
Refinement	

Refinement on F^2 H atoms treated by a mixture of
independent and constrained
refinement $R[F^2 > 2\sigma(F^2)] = 0.035$ independent and constrained
refinementS = 1.00 $w = 1/[\sigma^2(F_o^2) + (0.0450P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{max} = 0.001$
 $\Delta\rho_{max} = 0.38$ e Å⁻³
 $\Delta\rho_{min} = -0.26$ e Å⁻³

Table 1

Selected geometric parameters (Å).

Co-O1	2.0792 (12)	Co-N2 ⁱ	2.1517 (18)
Co-N1	2.1440 (18)	Co-O3	2.1548 (15)

Symmetry code: (i) x, 1 + y, z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} O3 - H10 \cdots O2^{ii} \\ O3 - H9 \cdots N3^{iii} \end{array}$	0.82 (2) 0.80 (3)	1.83 (3) 2.15 (3)	2.620 (2) 2.938 (2)	161 (2) 167 (3)
	1 (11)	1.2	1	

Symmetry codes: (ii) $-x, y, \frac{1}{2} - z$; (iii) $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$.

All H atoms were found in a difference Fourier map and refined isotropically.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China for supporting this work (No. 50073019).

References

- Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- He, H. Y. & Zhu, L. G. (2003). Acta Cryst. E59, 0174-0176.
- Hu, C. W., Wang, Y. H., Feng, L. Y., Li, Y. G., Wang, E. B., Hu, N. H. & Jia, H. G. (2002). *Inorg. Chem.* **41**, 6351–6357.
- Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739– 1753.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXP97. University of Göttingen, Germany.

- Tao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000–1002.
- Yuan, R. X., Xiong, R. G., Chen, Z. F., You, X. Z., Peng, S. M. & Lee, G. H. (2001). *Inorg. Chem. Commun.* 4, 430–433.