Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Yin He, Ai-Qing Ma and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.087$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaqua(4,4'-bipyridine)bis(4-cyanobenzoato)cobalt(II)

In the title polymeric complex, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Co}^{\mathrm{II}}$ atom, located on an inversion center, is surrounded by two N -donor molecules, two water molecules, and two 4-cyanobenzoate ligands, which impose an octahedral environment on the metal. 4-Cyanobenzoate, acting as a bridging linker, coordinates to the metal center in a monodentate fashion, in a skew mode. Both bridging spacers, $v i z$. the $4,4^{\prime}$-bipyridine and 4 -cyanobenzoate ligands, link adjacent metal atoms into a two-dimensional network.

Comment

In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and threedimensional coordination polymers with potential applications as functional materials (Kitagawa \& Kondo, 1998; Moulton \& Zaworotko, 2001). The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Tao et al., 2002). 4-Cyanobenzoic acid (Hcba) has been used to develop new blue fluorescent materials; two crystal structures involving this ligand were recently reported (He \& Zhu, 2003; Yuan et al., 2001) and there are no reports of the cyano groups coordinating to a metal center or forming hydrogen bonds. Here we present the crystal structure of the $\mathrm{Co}^{\mathrm{II}}$ one-dimensional network of the title compound, (I), which provides an interesting example of the cyano group of Hcba as a hydrogen-bond acceptor.

The building block of the structure of (I) consists of one $\mathrm{Co}^{\text {II }}$ atom, one $4,4^{\prime}$-bipyridine, two water molecules, and two cba ligands (Fig. 1). The $\mathrm{Co}^{\text {II }}$ atom, located on an inversion center, displays an octahedral geometry. Two 4-cyanobenzoate groups and two pyridine rings of the $4,4^{\prime}$-bipyridine ligands are located on opposite sides to minimize repulsion between the

Received 10 April 2003
Accepted 12 May 2003
Online 16 May 2003

ORTEP diagram of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View of the one-dimensional network formed by the $\left[\mathrm{Co}^{\text {II }}\left(4,4^{\prime}\right.\right.$ bipyridine)] building block.
ligands. The dihedral angle between the two rings of 4,4'-bipyridine is $30.44(13)^{\circ}$, indicating a large torsion. The cobalt metal centers are linked by two bidentate $4,4^{\prime}$-bipyridine linear spacers, which leads to a one-dimensional chain along the a axis (Fig. 2). The Co-O1 bond length [2.0792 (12) \AA] is shorter than that of Co-O3 [2.1548 (15) Å], indicating some distortion of the coordination geometry. The $\mathrm{Co}-\mathrm{N}$ bond lengths are similar to those of other $\mathrm{Co}^{\mathrm{II}}$ complexes with a $4,4^{\prime}$ bipyridine bridging linker (Hu et al., 2002). The 4-cyanobenzoate ligand is coordinated, in a monodentate fashion, in a skew mode $\left[\mathrm{Co}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2=156.36(11)^{\circ}\right]$ to the cobalt center. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between cyano groups and water molecules result in dimeric building units, viz. $\left[\mathrm{Co}_{2}(\mathrm{cba})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. Thus, the one-dimensional hydrogenbonding network is extended by cba as a hydrogen-bonding bridging linker (Fig. 3). As expected, both cba and 4,4'-bipyridine acting as linkages create a two-dimensional framework, with a Co ..Co distance for the cba linkage of

Figure 3
View of the one-dimensional hydrogen-bond network formed by the $\left[\mathrm{Co}_{2}(\mathrm{cba})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ building unit.

Figure 4
View of the two-dimensional network constructed by bridging linkers of 4,4'-bipyridine and 4-cyanobenzoate ligands.
11.983 (2) \AA and a Co . . Co separation for the 4,4'-bipyridine linkage of 11.379 (2) \AA (Fig. 4).

Experimental

Crystals were grown by the layer method, using two solutions in a narrow tube with a diameter of 0.8 cm . The upper solution was 10 ml methanol containing $0.05 \mathrm{~mol} \mathrm{l}^{-1}$ 4-cyanbenzoic acid and $0.025 \mathrm{~mol} \mathrm{l}^{-1} \quad 4,4^{\prime}$-bipyridine. The lower solution was 5 ml $0.05 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in water. After standing for two weeks, purple needle crystals of (I) were obtained and filtered off.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=543.39$
Monoclinic, $C 2 /{ }_{c}$
$a=10.8329$ (9) A
$b=11.3792$ (9) \AA
$c=19.7327$ (16) \AA
$\beta=97.662$ (2) ${ }^{\circ}$
$V=2410.7(3) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 2702
reflections
$\theta=5.2-55.6^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$Z=4$
Block, purple
$0.32 \times 0.30 \times 0.27 \mathrm{~mm}$

Data collection

Bruker CCD area-detector	2830 independent reflections
diffractometer	2266 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.029$
Absorption correction: multi-scan	$\theta_{\max }=28.2^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996)	$h=-14 \rightarrow 14$
$T_{\min }=0.605, T_{\max }=0.815$	$k=-14 \rightarrow 14$
7278 measured reflections	$l=-25 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.00$
2830 reflections
210 parameters

2830 independent reflections
2266 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=28.2^{\circ}$
$k=-14 \rightarrow 14$
$l=-25 \rightarrow 18$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0450 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters (\AA).

Co-O1	$2.0792(12)$	$\mathrm{Co}-\mathrm{N} 2^{\mathrm{i}}$	$2.1517(18)$
Co-N1	$2.1440(18)$	$\mathrm{Co}-\mathrm{O} 3$	2.1548 (15)

Symmetry code: (i) $x, 1+y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {iii }}}$	$0.82(2)$	$1.83(3)$	$2.620(2)$	$161(2)$
$\mathrm{O}^{\text {iin }}-\mathrm{H} 9 \cdots \mathrm{~N} 3^{\text {iii }}$	$0.80(3)$	$2.15(3)$	$2.938(2)$	$167(3)$

Symmetry codes: (ii) $-x, y, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.

All H atoms were found in a difference Fourier map and refined isotropically.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China for supporting this work (No. 50073019).

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
He, H. Y. \& Zhu, L. G. (2003). Acta Cryst. E59, o174-o176.
Hu, C. W., Wang, Y. H., Feng, L. Y., Li, Y. G., Wang, E. B., Hu, N. H. \& Jia, H. G. (2002). Inorg. Chem. 41, 6351-6357.

Kitagawa, S. \& Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 17391753.

Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Sheldrick, G. M. (1996). SADABS. University of Göttingen,Germany.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXP97. University of Göttingen, Germany.
Tao, J., Yin, X., Huang, R. B. \& Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000-1002.
Yuan, R. X., Xiong, R. G., Chen, Z. F., You, X. Z., Peng, S. M. \& Lee, G. H. (2001). Inorg. Chem. Commun. 4, 430-433.

